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LETTER TO THE EDITOR

R-matrix formulation of deformed boson algebra

J Van der Jeugt}

‘Toegepaste Wiskunde en Informatica, Universiteit Gent, Krijgslaan 281-59, B9000 Gent,
Belgium

Received 18 January 1993

Abstract. Rewriting the Pusz-Woronowicz g¢-boson relations in terms of the standard
R-matrix for SUg{n), we give the definition of a general deformed boson algebra .A(R)
depending upon a matrix R. We investigate the conditions under which this algebra is
assgciative, For n = 2, a sel of matrices satisfying these conditions is classified, and the
corresponding ‘twisted statistics’ is given.

The interest in quantum groups [1,2] and quantum enveloping algebras [3] (see
also [4-6] for introductions to these topics) has led to the study of g-deformations
of the Heisenberg—Weyl algebra and the introduction of so-called g-bosons [7-9].
Two types of g-bosons for the quantum enveloping algebra su,(n), or the quantum
group SU,(n), have been introduced. On the one hand, there are the Biedenharn-
Macfarlane g-bosonic operators [7,8], which give rise to symmetric irreducible
representations of su,(n) and to a Jordan-Schwinger realization of the su,(n)
Chevalley generators [10]. On the other hand, there are the Pusz—Woronowicz g-
boson operators {[9], related to a covariant differential calculus on the quantum
group SU,(n). Here, the creation operators transform as the components of
the fundamental representation of su,(n), and the annihilation operators as the
components of the dual representation. Also, the Pusz—Woronowicz operators
transform covariantly under the action of the quantum group SU,(n). As operators
acting in the ¢-Fock space, the Pusz-Woronowicz and the Biedenharn~Macfarlane
operators can be related to each other [11-13).

In this letter, we shall define the deformed boson algebra in terms of the Pusz-
Woronowicz operators. Their creation and annihilation operators are related by
expressions mvo]vmg the fundamental R-matrix of SU,(n). Taking these relations as
the starting point for our definition of the deformed boson algebra, with an arbitrary
matrix R, we investigate the conditions under which an associative algebra with
Hermitian conjugate is obtained. Here, the technique is similar to that developed in
[14, 15], but the ansatz is different. This leads to three conditions for the matrix R
(a Hermiticity condition, the Yang-Baxter equation (YBE), and a Hecke condition),
which are clearly satisfied by the SU,(n) fundamental R-matrix. For n = 2, a
particuiar set of matrices /i satisfying these conditions is classified, showing that
apart from the trivial solution and the usual SU (2) solution (R, and its double),
there is a third matrix R satisfying the conditions required here.
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The Pusz-Woronowicz g-bosonic creation and annihilation operators A} and A,
(i = 1,...,n) satisfy the commutation relations [9, 12, 13]
AjA; —qA;A =0 1< §
AlAl g l4lAal =0 i<

A;Al —qAlAa, =0 igj 6

i-1
A AL - g AlA =14 (¢~ 1)) AjA
j=l1
These relations can be re-expressed in terms of the fundamental R-matrix of SU,(n).
This is an n? x n? matrix, and can be written as [6]

"qzeu®eu+zeu®%+(q e e 0e; @)

i%i i<j

where e;; is the n x n matrix with entry 1 at position ({,7) and 0 elsewhcre. Note
that

R=R; nex®e¢; (3)

in (3), and in the rest of the letter there is summation over repeated indices. Putting
V = C", R can be seen as an clement of End(V @ V). The twist operator
P e End(V® V) is defined as P(z®@ y) = y® z, for all z,y € V, in matrix
notation we have F; ;, = 6;,6,;.

In terms of (2), the relations (1) can be rewritten as

AA; =47 Rij,kIAiAk 4)
AlAl = g'Ry, ;; ALA] (5)
AiA} = 65_,' + qus‘,leLAl . (6)

This form of the g-bosonic relations can be deduced from the connection between
the g-boson operators and the differential calculus for SU,(n) [9,16-18}. In this
letter, (4)-(6) will be the starting point for our definition ‘of the deformed boson
alpebra A. This will be a complex algebra generated by € and the elements
Al, A, (i = 1,...,n), equipped with a Hermitian conjugation ! which is an
antihomomorphism (ie. (ab)! = blal) such that (A,) = Al, (A})} = A,, and
(A)f = A* (complex conjugate) for A € C. Moreover, there will be quadratic
relations similar to (4)-(6), but with ¢~! and g replaced by independent complex
numbers p and p'. Note that from the invariance under Hermitian conjugation of
the relation

A:'A} =6&; + P’Rki,leLA! (7}
it follows that the matrix R must satisfy
Ry = Riyji - 3

Thus, we have the following definition:
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Definition. Let R be a complex n? x n? matrix satisfying (8). The deformed boson
algebra 4(R) is the complex algebra generated by 1, Al and 4, (i = 1,...,n)
subject to the relations

AjA; = pRy; rArAg 9
AlAl = p*R}; 1 ALA] (10)
A"A} = 633 + p'Rki,jiA}cAl ‘ (11)

with antihomomorphism ! satisfying (A,) = Al, (ADt = A, and (A)f = A*
(Ael).

Note that (10) follows from applying ! to (9). In this definition, p is a complex
number, and p’ is a real number.

Such an algebra would be of little interest if it were not associative. In the
following, we shall investigate the conditions under which A(R) is an associative
algebra. To express associativity, it is sufficient to require the braid transposition
schemes for triples of generators of A(R) [2]. This is by now a well known technique.
For the product A;A; A,, the braid transposition scheme is

ki —  kij
v N
ijk kii | . (12)
N Ve
jik — ki

Applying this to A, A; A, , using (9), yields the YBE for the matrix R:

E Rab,uvva,cdRue,fw = Z Rbc,uvau,fcRav,wd' (13)

w,v,w u,v,w

This relation between the braid scheme and the YBE is known, it also follows from the
fact that the A; satisfy the same relation (9) as the quantum plane coordinates [2],
and the equivalence of the associativity of the quantum plane coordinates and the
YBE for R.

Similarly, the braid scheme for AT A} Al gives rise to the YBE equation for R* or,
using (8), to the YBE for R. The triples of generators that remain to be investigated
are A;A; Al and A, Al A]. Here, the calculations are similar as in [14,15], but the
starting point is different. We shail give one calculation in more detail here. Using
the top half of (12) on A;A; Ai, i.e. first use (11) on the last two components, then
(11) on the first two components, and finaily (9) on the last two components, one
finds

AiA_fA}; =6 A;+ P Rij Ay + PRy gy Ryiy Rup oy AL AL A, (14)
Using the bottom half of (12) on A4, 4; AL, one finds

At' A’j A’L = PRij,kb Ab + pP’Rz'j,n.u Rua,ku Av + prszij,abRua.,ku Rxb,uyALAyA‘u .
(15)
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The cubic terms in the right-hand sides of (14) and (15) are equal if and only if R
satisfies the YBE. The linear terms are equal if the following relation is satisfied:

PP Ry oo Rya it + PR — B Ry gy — 85365 = 0. (16)

Using the notation R = PR, this can be rewritten as follows:
(PR-1)(p'R+1)=0. (17)

This is the Hecke condition for £, and implies that & has two eigenvalues p~! and
—p'~1. Similarly, if one considers the braid scheme for A,-A_‘;- AL, using (8), one can
show that the cubic terms again give rise to the YBE for R, and that the linear terms
give the condition

(p*R-1)(pR+1)=0. (18)

It follows that p has to be real. Thus we have the following result:

Theorem. The deformed boson algebra A( R) with p and p' real is an associative
algebra provided R satisfies the YBE (13) and the Hecke condition (17).

The following is a classical remark concerning the quantum group and is worth
repeating here in terms of the deformed boson algebra relations. Consider the
following transformations for the deformed bosons:

— =
B, = M;A, B} = N;;Al (19)

where the elements M;; and N,; are supposed to commute with A, and A}, but
not among themselves. Then (%) holds for the B-operators provided

RMle - Mlﬂ/fzﬂ (20)

where M; = M ® 1 and M, = 1® M. Similarly, (10) holds for the B'-operators
provided

RN,N, = N,NR. 1)
Finally, relation (11) is valid for the { B, Bt}-operators if
M Ny =& NiaMy; = 6. (22)

If this last relation holds, then (21) and (20) are equivalent statements.

Let us now turn to the study of matrices R satisfying the three properties (8}, (13)
and (17) in the case n = 2. It would still be a formidable task to find all matrices
satisfying these three conditions. Therefore, we make one further assumption. We
shall assume in (9) that in the relations between A;A4, and A,A; no A;A, and
A, A, appear, and vice versa. Concretely, this means that the matrix R now takes
the special form

X ©oX
oX X O
oX X O
X ©OoOX
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Let us choose the following labelling for R (p is real):

¢ 0 0 d
0 b ¢ 0O
PR={ 49 o » o
& 0 0 a

where it follows from (8) that ¢, a',¢,¢’ € R and b,d € C. Putting B = pPR and
using (17), the matrix B must satisfy (B — 1}(B + a} = 0, with a = p/p’. This
leads to the foliowing conditions:

(e+e'+a—-1)d=0 dd" = (a+ a)(l~a)=(a'+ a)(1-4a')

(23)
(c+d+a-1}b=0 ' =(c+a)(l-c)=(+a)(1-¢).
Finally, there are the conditions following from the YBE for R (or for pR); these are
rather numerous and we will not write them here explicitly. It is, however, possible
to solve the system of equations completely. The following solutions emerge:

d=0,b=0
The YBEleadstoa=a’' = e=¢" =10ra =a’ = ¢ = ¢’ = —a. Thus the solutions
are

pR=F or pR=-aP.

(i) d=0, b#0.

The YBE implies ce’ = 0. There are two cases to distinguish, If ¢ = @, then ¢’ = 1-«
and bb* = o. Thus o must be positive. Puiting o = g2 (g real), the most general
solution in this case is:

{1,_q2} 0 0 0
- 0 +q 0 0
pR= 0 1-¢* +¢ 0 24
0 0 0 {1,-¢%}

where {1, —¢*} indicates that for this entry one can choose either 1 or else —g°.
In the second case, ¢! = 0 and ¢ = 1 — «. Using the same notation, this leads to

- 0 0 o0
_ 0 +q 1-¢? 0
PR=1 o 0 "xg 0 (25)
o 0 0 {l,-¢%

The classical R-matrix, and its quantum double, belong to this class of solutions.

(iii) ¢ # 0.

In this case, the YBE implies ¢ = ¢/ = (1 — «)/2. The last equation of (23) implies
bb* = ((a+1)/2)*, and the YBE implies that dd* = ¢¢’ = ((1— a)/2)". From a
number of conditions following from the explicit form of the YBE, one deduces that
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> 0, so again we put « = g% thena = (1—-¢?)/2+tqgand o' = (1 - ¢*)/2F q,
and b and d must be real. The most general solution in this case reads

— g2 1— o2
(1 2q + eq 0 0 ¢ 2q \
2 —
0 e”l-;q 12q2 0
pR = 1 g 14 ¢ . (26)
0 e’ 0
2 2

— g2 e

\ el zq 0 0 12q —-¢q)

Here, ¢, ¢’ and ¢" are three independent signs: €, ¢/, ¢ € {—1,+1}.

Let us now consider explicitly the ‘statistics’ of the deformed boson operators in
these situations. For case (i), the relations are easy to work out and rather trivial.
For case (ii), (24) and (25) are similar; here, we only consider (25). Note that the
matrix (25) can in its most general form be rewritten as follows:

1-q? 14 ¢%
7 Te , 0 g
- 0 g l-gqg
pR= 0 0 ¢q 0 @7
1_q2 11+q2
0 0 0 > + ¢ >

with three independent signs: ¢, ', ¢ € {—1,+41}. The relations following from (9)
read

(e—-1AA = (" -1)A,4, =0 AA; =g 14,4, (28)

The relations among A} follow by applying the antihomomorphism, and the relations
(11) become

-2_1 -2 1
AIA'{-(q S + ¢ 2+ )A{A1=1

AAL = €q Al A, i#J (29)

'Hq_z‘l"l

_.2_1
A, Al — (3—2—— +¢' I ) AlA, =1+ (g2 -1Al4,.

With € = ¢ = ¢” = 1 and g replaced by g™, these relations coincide with (1). When
g = 1 in (28) and (29), this becomes

(e-1)A42=0 AAl —eala =1
AAr—€AA=0  AAT-dglAlA, =0 i (0)
" -1)A2=0 AAL - AlA, =1,

For ¢ =1 (resp. —1), (4;, A ) is a boson (resp. a fermion) annihilation and creation

operator pau Similarly, for € = 1 (resp. —1), (A,, 2) is a boson (resp. a fermion)
pair. For ¢’ =1 (resp. —1), the two modes commute (resp. anticommute).
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Finally, consider the peculiar statistics implied by case (iii). From (9), the
following two relations are obtained:

(1-€q)A Ay = €(1+ €q) Ay A, AA, =44, (1)

and similarly for the quadratic relations in Al. From (11), one finds

eg” 41, _ _
AAL+ Al = 14 ET (07 + DALA + (a7 - DALAY)
g72-1 t
AAL - ala, = 5 (€A14,+ ' AlA))
(32)
A Al —e"alA, =2 > L(eALA, + "l Ay)
-1_1
A AL+ AlA, =14+ (g7 + DAIA, + (g7 — 1 AlA,) .

2

When ¢ = 1 in (31) and (32), one can verify that it is a system of one boson pair
and one fermion pair which commute or anticommute (depending on whether €” is
1or -1).

The relations (28), (29) and (31), (32) can be considered as a further
generalization of the Pusz—Woronowicz relations (1) in terms of an R-matrix which
is still compatible with an associative algebra. Al the classical situations, such as a
system of two bosons or of two fermions, are easily seen to be special limits of the
above deformed cases.

The author would like to thank Dr C Quesne (Université Libre de Bruxeiles) for
useful discussions.
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