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LETTER TO THE EDITOR 

R-matrix formulation of deformed boson algebra 

J Van der Jeugtt 
lbegepaste Wlskunde en Infomatica, Universiteit Gent, Krijgslaan 28149, B90m Gent, 
Belgium 

Received 18 Janualy 1993 

Abstract. Rewriting the Pusz-Woronowia 9-boson relations in terms of the standard 
R-matrix for SlJ,(a), we give the definition of a general deformed boson algebra d(R) 
depending upon a matrix R. We investigate the conditions under which this algebra is 
associative. For n = 2, a e t  of matrices satiswing these conditions is clasriilied, and the 
corresponding 'twisted statistid is given. 

The interest in quantum groups [1,2] and quantum enveloping algebras [3] (see 
also 14-51 for introductions to these topics) has led to the study of q-deformations 
of the Heisenberg-Weyl algebra and the introduction of so-called q-bosons [7-91. 
?ivo types of q-bosons for the quantum enveloping algebra su,(n),  or the quantum 
group S U 9 ( n ) ,  have been introduced. On the one hand, there are the Biedenham- 
Macfarlane q-bosonic operators [7,8], which give rise to symmetric irreducible 
representations of sug(n) and to a JordanSchwinger realization of the su,(n) 
Chevalley generators [lo]. On the other hand, there are the Pus-Woronowicz q- 
boson operators [9], related to a covariant differential calculus on the quantum 
group SUJn). Here, the creation operators transform as the componenfs of 
the fundamental representation of suq(n),  and the annihilation operators as the 
components of the dual representation. Also, the Pusz-Woronowicz operators 
transform covariantly under the action of the quantum group SU9( n). As operators 
acting in the q-Fock space, the Pusz-Woronowicz and the Biedenham-Macfarlane 
operators can be related to each other 111-131. 

In this letter, we shall define the deformed boson algebra in terms of the Pusz- 
Woronowicz operators. Their creation and annihilation operators are related by 
expressions involving the fundamental R-matrix of SU,(n).  "king these relations as 
the starting point for our definition of the deformed boson algebra, with an arbitrary 
matrix R, we investigate the conditions under which an associative algebra with 
Hermitian conjugate is obtained. Here, the technique is simiIar to that developed in 
[14, U], but the ansatz is different. This leads to three conditions for the matrix R 
(a Hermiticity condition, the Yang-Baxter equation (YBE), and a Hecke condition), 
which are clearly satisfied by the SU,(n)  fundamental R-matrix. For n = 2, a 
particular set of matrices R satisfying these conditions is classified, showing that 
apart from the trivial solution and the usual SUq(2)  solution (R,  and its double), 
there is a thud matrix R satisfying the conditions required here. 
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The Pusz-Woronowicz q-bosonic creation and annihilation operators A,! and Ai 
(i = 1,. . . , n) satisfy the commutation relations [9,12,13] 

A ; A . - q A j A i = O  I i < j  

A!A! - q-'A!A! = 0 
I 3 :  i < j 

i-1 

A i 4  t -  q *A!A,  , = I + ( $ - .  I ) ~ A ; A ~ .  
j=1  

These relations can be re-expressed in terms of the fundamental R-matrix of SU,(n). 
This is an n2 x nz matrix, and can be written as [6] 

R = q C e i i @ e j i + C e i i @ e j j + ( ~ - q - ' ) C e i j @ e j i  (2) 
i +#j i<j 

where eii is the n x n matrix with entry 1 at position ( i , j )  and 0 elsewhere. Note 
that 

R = Ri,.kl  e 3  ejr (3) 

in (3), and in the rest of the letter there is summation over repeated indices. Putting 
V = Cn, R can be seen as an element of End(V @ V). The twist operator 
P E End( V @ V) is defined as P(I @ y) = y @ r, for all I, y E V; in matrix 
notation we have Pij,kl = 6 ; J j k .  

In terms of (2), the relations (1) can be rewritten as 

AiAj  = q-'Rij ,klAIAk (4) 

A ~ A ;  = g - l ~ , , , i j ~ ; ~ j  (5) 
A;A; = 6ij  + qRk; , j lAkAl .  t (6) 

This form of the q-bosonic relations can be deduced from the connection between 
the q-boson operators and the differential calculus for SU,(n) [9,16-IS]. In this 
letter, (4)-(6) will be the starting point for our definition of the deformed boson 
algebra A. This will be a complex algebra generated by C and the elements 
AI, Ai (i = 1, ... ,n), equipped with a Hermitian conjugation t which is an 
antihomomorphism (i.e. (ab)t = btut)  such that (Ai)t  = A!, (Af) t  = Ai, and 
(X)t = A' (complex conjugate) for X E C. Moreover, there will be quadratic 
relations similar to (4)-(6), but with q-' and q replaced by independent complex 
numbers p and pt .  Note that from the invariance under Hermitian conjugation of 
the relation 

AiA,! = bij + p'Rki,jrAiAl (7) 

R i j , k l  = R?!c,ji. (8)  

it follows that the matrix R must satisly 

Thus, we have the following definition: 



Letter to the Editor L407 

Definition. Let R be a complex n2 x n2 matrix satisfying (8). The deformed boson 
algebra d( R) is the complex algebra generated by 1, Ai and A,  (a = 1,. . . , n) 
subject to the relations 

with antihomomorphism t satisfying (A , ) t  = A!, (Ai ) t  = Ai,  and ( A ) t  = A’ 

Note that (10) follows from applying t to (9). In this definition, p is a complex 
number, and p’ is a real number. 

Such an algebra would be of little interest if it were not associative. In the 
following, we shall investigate the conditions under which A ( R )  is an associative 
algebra. lb express associativity, it is sufficient to require the braid transposition 
schemes for triples of generators of A( R )  [2]. This is by now a well known technique. 
For the product AiAjA, ,  the braid transposition scheme is 

(A E C). 

k j i  . ! 
i k j  + k i j  

i: j i k  - j k i  

I 
/* 

i j k  

Applying this to A , A j A ,  , using (9), yields the YBE for the matrix R: 

R a b v = w R v w , c d R u e , f w  = R b e , u v R w u s f c R v , , w d .  (13) 
OI%W U I V I W  

This relation between the braid scheme and the YBE is known; it also follows from the 
fact that the Ai satisfy the same relation (9) as the quantum plane coordinates [2], 
and the equivalence of the associativity of the quantum plane coordinates and the 

Similarly, the braid scheme for Ai A: AI gives rise to the YBE equation for R’ or, 
using (S), to the YBE for R. The triples of generators that remain to be investigated 
are AiAjAi  and AiAjAb. Here, the calculations are similar as in [14,15], but the 
starting point is different. We shall give one calculation in more detail here. Using 
the top half of (12) on A i A j A l ,  i.e. first use (11) on the last two components, then 
(11) on the first two components, and finally (9) on the last two components, one 
finds 

YBE for R 

Ai AjA: = 6 j k A i  P ’ R i , , k b A b  -b P’2PR,j,r;bR,i,,.R,b,,,A?A,A,. (14) 

Using the bottom half of (12) on A i A j A : ,  one finds 

A i A j A l  = P R i j , k b A b  f PP’Ri j ,au  R u o , k u A o  + p f 2 P R i j , o b R u o , k u  R z b , U y A L A y A v  . 
(15) 
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The cubic terms in the right-hand sides of (14) and (15) are equal if and only if R 
satisfies the YBE The linear terms are equal if the following relation is satisfied: 

PP’Rij,obRb.,ki  i- PRij,ki - P’R;j,ki - s j k 6 i i  = 0. (16) 

( p k - l ) ( p ’ l Z + l )  = o .  (17) 

Using the notation k = PR,  this can be rewritten as follows: 

This is the Hecke condition for k, and implies that k has two eigenvalues p - ,  and 
-p‘-I. Similarly, if one considers the braid scheme for AiAjAi ,  using (8), one can 
show that the cubic terms again give rise to the YBE for R, and that the linear terms 
give the condition 

(p*k - l ) (p‘R + 1) = 0. (18) 

It follows that p has to be real. Thus we have the following result: 

Theorem. The deformed boson algebra A( R )  with p and p‘ real is an associative 
algebra provided R satisfies the YBE (13) and the Hecke condition (17). 

The following is a classical remark concerning the quantum group and is worth 
repeating here in terms of the deformed boson algebra relations. Consider the 
following transformations for the deformed bosons: 

B, = MijA ,  B! = N . . A ~  J Z  1 (19) 

where the elements Mi. and N j ;  are supposed to commute with A ,  and A i ,  but 
not among themselves. ‘hen (9) holds for the B-operaton provided 

RM2Ml = M,MzR (20) 
where MI = M @ 1 and M2 = 1 @ M .  Similarly, (10) holds for the Bt-operators 
provided 

RN,N2= N z N I R .  (21) 

M,,Naj  = bij N ; , M a j  = h i j .  (22) 

Finally, relation (11) is valid for the { B ,  Bt]-operators if 

If this last relation holds, then (21) and (20) are equivalent statements. 
Le t  us now turn to the study of matrices R satisfying the three properties (8), (13) 

and (17) in the case n = 2. It would still be a formidable task to find all matrices 
satisfying these three conditions. Therefore, we make one further assumption. We 
shall assume in (9) that in the relations between A,A2 and A,Al no A,A, and 
A,A, appear, and vice versa. Concretely, this means that the matrix R now takes 
the special form 

o o x  
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Let us choose the following labelling for R ( p  is real): 

a O O d  
O b c O  

d' 0 0 
p R =  ( 0 e' b' :,) 

where it follows from (8) that a, a', c, c' E R and b, d E @. Putting B = p P R  and 
using (17), the matrix B must satisfy (B - 1 ) ( B  + -a) = 0, with CY = p / p ' .  This 
leads to the following conditions: 

( a +  a'+ 01- l ) d  = 0 

( c +  c'+ C Y -  l ) b =  0 

dd' = ( U  + a ) ( l - a )  = (a'+ a)(l- a') 

bb' = ( c +  a ) ( l -  C )  = (c '+   CY)(^- c ' ) .  
(23) 

Finally, there are the conditions following from the YBE for R (or for pR); these are 
rather numerous and we will not write them here explicitly. It is, however, possible 
to solve the system of equations completely. The following solutions emerge: 

(i) d = 0, b = 0. 
The WE leads to a = a' = c = c' = 1 or U = a' = c = c' = --a. Thus the solutions 
are 

p R  = P or pR = - a P  , 

(ii) d = 0, b + 0. 
The YBE implies cc' = 0. There are two cases to distinguish. If c = 0, then c' = 1-or 
and bb' = -a. Thus CY must be positive. Putting -a = q2 (q real), the most general 
solution in this case is: 

where {1,-$}  indicates that for this entry one can choose either 1 or else -q2. 
In the second case, c' = 0 and c = 1 - CY. Using the same notation, this leads to 

The classical R-matrix, and its quantum double, belong to this class of solutions. 

(i) d # 0. 
In this case, the YBE implies c = c' = ( 1  - 0 ) / 2 .  The last equation of (U) implies 
bb' = ((a + 1)/2)', and the YBE implies that dd' = cc' = ( (1  -  CY)/^)*. From a 
number of conditions following from the explicit form of the YBE, one deduces that 
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a 2 0, so again we put a = q2; then a = (1  - $ ) / 2  i q and a' = ( 1  - $ ) / 2  7 q, 
and b and d must be real. The most general solution in this case reads 

p R  = 

2 2 

0 

0 

E ) ( -  1+q2  - 1 - 4 2  

- 1 - q* 
2 2 

2 2 

0 

0 1 + 42 

Here, e,<' and e'' are three independent signs: E . ~ , c ' '  E {- l ,+l} .  

Let us now consider explicitly the 'statistics' of the deformed boson operators in 
these situations. For case (i), the relations are easy to work out and rather trivial. 
For case (E), (24) and (25) are similar; here, we only consider (25). Note that the 
matrix (25) can in its most general form be rewritten as follows: 

with three independent signs: 6, d , c "  E {- l ,+l] .  The relations following from (9) 
read 

( E  - l )AIAl  = (6'' - l)A2A, = 0 AiAz = c'q-'AZAI. (28) 

The relations among A! follow by applying the antihomomorphism, and the relations 
(11) become 

With t = 8 = e'' = 1 and q replaced by q-', these relations coincide with (1). When 
q = 1 in (2S) and (29), this becomes 

(c  - 1)At = 0 A,A; - = 1 

(c" - 1)AZ = 0 

A,Aj - c'q-'A!A, = 0 i # j (30) I '  AlA2 - c'A2A1= 0 

A,AJ - ~ ' A I A ~  = 1 .  

For c = 1 (resp. -l), (Al ,  AI) is a boson (resp. a fermion) annihilation and creation 
operator pair. Similarly, for c" = 1 (resp. -l), (A2,  Af)  is a boson (resp. a fermion) 
pair. For e' = 1 (resp. -I) ,  the two modes commute (resp. anticommute). 
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From (9), the Finally, consider the peculiar statistics implied by case (E). 
following two relations are obtained: 

(1 - 6q)AiAi = E'( 1 + rq)AzAz A,Az = E"AZA~ (31) 

and similarly for the quadratic relations in A!. From ( l l ) ,  one finds 

cq-1 - 1 
A,A: + A ~ A ,  = i + ((eq-l + I)A;A, + (cq-l - I)A:A,). 

When q = 1 in (31) and (32), one can verify that it is a system of one boson pair 
and one fermion pair which commute or anticommute (depending on whether E" is 
1 or -1). 

The relations (ZS), (29) and (31), (32) can be considered as a further 
generalization of the Pusz-Woronowicz relations (1) in terms of an R-matrix which 
is still compatible with an associative algebra. AI1 the classical situations, such as a 
system of two bosons or of two fermions, are easily seen to be special limits of the 
above deformed cases. 

The author would like to thank Dr C Quesne (Universite Libre de Bruxelles) for 
useful discussions. 
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